An Analysis of Long Baseline Radio Interferometry, Part Il

J. B. Thomas

Tracking and Orbit Determination Section

This article is the third installment in a series of articles presenting an analysis
of long baseline radio interferometry. The practical data reduction steps that are
required to extract fringe amplitude, fringe phase, and delay are described. These
data reduction steps include bit stream manipulations, fringe stopping, Fourier
analysis, and phase tracking. In addition, a detailed analysis is presented for the
two-channel approach to bandwidth synthesis, a technique used for making accu-

rate delay measurements.

I. Introduction

Two previous articles (Refs. 1, 2) were the first of a
series of technical reports presenting an analysis of long
baseline radio interferometry. In those reports, the cross-
correlation function for a natural radio source was ex-
pressed in terms of fringe visibility, system temperatures,
fringe phase and delay. In addition, an approximate math-
ematical model for the geometric delay (Ref. 1) was out-
lined. This report describes the practical steps in data
reduction that are required to extract fringe amplitude,
fringe phase, and delay. Fringe amplitude measurements
can yield valuable information concerning source struc-
ture (Ref. 1). Delay and fringe phase measurements can
lead to precise determination of geophysical parameters
(polar motion, UT1, baseline vectors) and radio source
locations. The data reduction steps described in this
report include bit stream manipulations, fringe stopping,
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Fourier analysis, and phase tracking. In addition, the last
section outlines two-channel bandwidth synthesis, a tech-
nique used for making accurate delay measurements.

Il. Cross-Correlated Function

In long baseline interferometry measurements, the
radio signal produced by a distant source is recorded
simultaneously at two widely spaced antennas. These
recorded signals are then cross-correlated to determine
correlated amplitude as well as delay and fringe phase.
In the present radio interferometry data reduction sys-
tem, the first step in cross-correlation involves the mul-
tiplication of the voltage signals observed at the two
antennas. One signal is offset in time to compensate for
the difference in wave front arrival times.
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Previous reports (Refs. 1, 2) derive the ensemble aver-
age of the voltage product for a natural source. This
average voltage product, called the cross-correlation func-
tion (CCF), is given for analog signals by the expression
(Ref. 2):
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where fringe phase is given by
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and where the “time delay error” is given by
Ar, =71+t +ret 10— Th
In this expression,

V; (t) = voltage recorded at time t at station j,j = 1,2
y, = fringe visibility
TR], = radio source temperature at station

TS]. = system noise temperature at station §
W3 = instantaneous recorded bandwidth
W, = bandpass overlap after doppler shifting

w; = total effective mixing frequency at station
ii=12

wg = effective interferometer bandpass center after
doppler shifting

I, = total instrumental phase shift including mixing
signal drifts

R, = brightness transform phase shift
m = model time delay, computed
7, = geometric time delay, actual

7 = total instrumental delay including clock
synchronization error

r; = differential troposphere time delay

7. = differential charged-particle time delay at
frequency o,

C, = differential charged-particle phase shift at
frequency o,

Note that transmission media effects have been in-
cluded in the total delay and phase for completeness. This
expression assumes a rectangular system bandpass with
a linear phase-frequency response at each station. The
model delay 7, contains best estimates for the geometric
and instrumental delays. In some cases, a troposphere
model might be included in .. In addition to these terms,
the model delay always contains a time-independent off-
set 7y which can be adjusted to “fine-tune” the alignment
of the two bit streams.

The present JPL interferometry system is not analog
but digital and records only the sign of the voltage signals.
For such infinitely clipped signals, the cross-correlation
function becomes (Refs. 2, 3):

ta(t, 7m) = (V, () Vs (& + 7))
(2)

_2 sin~! 7, (t, 7m)

where
V() = +1iV,(# >0
Vit) = —1if V, (t) <0

In this report, we will consider only the weak source case
(rs < < 1) for which

2
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where

A = 2 Tg Tk, Wy sine Wp Ar,
PR N T T, Wy = Wpar,

The cross-correlation function describes the average
behavior of the voltage product. As indicated by Eq. (3),
the cross-correlation function is a product of a sinusoidal
factor cos ¢; and an amplitude factor A;. The phase of the
sinusoidal factor describes the average phase behavior of
the total system. The amplitude factor is a measure of
the accuracy of time domain alignment and peaks if the
model delay 7, is sufficiently close to the actual total
group delay (WpAr, << 1). In addition, the amplitude
depends on the source’s correlated flux and system noise.

The next section will describe how, on the basis of this
expected average behavior, the actual voltage products
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are formed and manipulated so that amplitude, phase,
and delay can eventually be extracted. Fringe amplitude
measurements can yield valuable information concerning
source structure (Ref. 1). Delay and fringe phase mea-
surements can lead to precise determination of Earth
orientation parameters, baseline vectors, and radio source
locations.

I1l. Bit Stream Manipulations

The voltage signals at each antenna are sampled in time
at the Nyquist rate 2Wj, where Wy is the instantaneous
recorded bandwidth. The volume of data generated by
typical sampling rates (10*-10¢ bits/sec) is too large to be
manageable without compression. In addition, the noise
on a single sample point on the cross-correlation function
is generally too large for a single point to be informative
when taken alone. Consequently, data compression tech-
niques are employed in order to both reduce the volume
of data and to collect statistics. The compressed data re-
veal the underlying characteristics of the cross-correlation
function that are totally masked by noise over a few sam-
ple points. Typically, one data point in the compressed
data (stopped fringes) contains 10-10° original sample
points. Two stages are involved in the data compres-
sion procedure: presums and fringe stopping. The basic
features of the initial steps in data reduction (signal mul-
tiplication and presums) will now be outlined. Fringe
stopping is discussed in Section IV.

In a digital recording system, a positive voltage ob-
tained at a given sample point is represented on tape by
a bit with value 1 while a negative voltage is a 0 bit.
Examples of two such bit streams, one for each antenna,
are shown in Fig. 1. As indicated earlier, the time spacing
between adjacent bits is 1/(2W ) where W5 is the instan-
taneous bandwidth. After being read into a computer, bit
stream 2 is offset relative to bit stream 1 by a model delay
m» which partially compensates for the time delay of sig-
nal 2. The model delay is typically a sum of a time-varying
geometric delay, a constant instrumental delay and an
adjustable offset (r.). Because the time scale is quantized
in bits, the total time offset 7, can at best be rounded to
the nearest bit. For typical experiments the quantized
time offset (7,,) is constant over many bits in time before
the model delay r,, changes by one bit (. < 2ubits/bit).
Consequently, many bits require the same quantized time
offset and may be aligned simultaneously by one shift
operation. The bit streams are then multiplied together
by means of an EXCLUSIVE OR, a digital logic opera-
tion that can operate simultaneously on all bits in a word
of data (32 bits in an IBM 360). The fact that many bits
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may be shifted and multiplied simultaneously greatly
reduces computation time. In the EXCLUSIVE OR op-
eration the following rules are satisfied:

One can readily show that these relations produce a
product with the proper sign when decoded under the
bit conventions defined above. An example of bit multi-
plication for 8 bits is shown in Fig. 1 along with the cor-
responding sign interpretation for the process.

Since the time offset must be quantized and rounded to
the nearest bit, the two bit streams can not be perfectly
aligned for all bits. This roundoff misalignment in digital
systems smears the “analog” delay curve. The resultant
loss in peak amplitude is easily calculated by averaging
the expected delay curve over 0.5 bits about the prin-
cipal maximum. In this manner, one can readily show that
a loss of peak amplitude of 3.4% results for an “ideal”
sin (x)/x curve. In subsequent work, this slight roundoff
smearing effect will be neglected.

After multiplication of the two bit streams, one has
obtained over a limited time range a function that on the
average is given by the cross-correlation function in
Eq. (3). If the frequency &, is small enough (=~ 2 — 100 Hz)
and the recording rate is large (= 10*to 10° bits/sec) the
CCF will be sampled many times (10%to 10°) during one
cycle of fringe phase as schematically indicated in Fig. 2.
(The magnitude of the fringe frequency ¢ may be greatly
reduced by proper selection of mixing frequencies, o,
and o., during the measurement.) Without loss of infor-
mation concerning the CCF, one can sum adjacent sam-
ple points as long as the sum time interval is small
(~ 0.1 cycle) compared to one cycle of fringe phase. These
local sums are called presums. A simple example is given
for 8 bits in Fig. 1. As indicated by the ostensibly random
bits in this example, the systematic trends of the CCF are
usually not evident over only a few bits due to poor SNR.

Because of the 0.1 cycle constraint, the presums for the
present 48 kbits/s system cover time intervals ranging
from one word (32 bits) to 50 words. Since the presums
are carried over only a fraction of a cycle, each presum
can be regarded as the value of the CCF at the middle
of the presum interval multiplied by the number of bits in
the presum. Thus, after signal multiplication and presum,
the resulting CCF is identical to the original CCF (Eq. 3),

49



except for an amplitude increase, and is sampled less
frequently. The presums U, (£, 7,,) can formally be repre-
sented as

t=t AL, 2
U, (t, ) = Vi@ V. (¢ + %) @)

t=t-Af,/2

where ‘7,- denotes infinitely clipped voltage and At, is the
presum time interval. All bit products within this time
interval are included in the sum. The expected behavior
of the presums is given by the expression

U, (t, 7m) = N,A; cos ¢; + noise (5)
where N, is the number of bits in the presum given by
N, = 2W; At,

Generally, the noise on the presums is too large for an
individual presum to be useful. Therefore, the data must
be compressed even more to reveal the cross-correlation
function as indicated in the next section.

IV. Fringe Stopping

After obtaining the presums, the data can be com-
pressed more by a process known as fringe stopping or
phase counter-rotation. The first step in this process multi-
plies the presums by the cosine (or sine) of a model phase.
(In the present system, the fringes are stopped with both
the sine and cosine functions so that two statistically
independent fringe compressions are obtained.) The
model phase is computed from the expression

bm (t) = —¢t + (0f — o))t + b1y (6)
where o} and o} are best estimates for the mixing frequen-
cies «;, and v, and 7, is the model delay discussed in
Section II. The frequency ¢ is a small analytical offset
(= 0.1 — 0.2 Hz) of known sign and magnitude that will
be discussed below. When the presums are multiplied by
the cosine of the model phase, one obtains two terms

U, (t, 7m) cOS ¢pm = N,A; cOs ¢, COS ¢y, + nOise

1
- aNiAf [COS (¢f - ¢m) + CcOs ((i)f + (;L‘)m)]
+ noise )

The first term is of low frequency if the model phase
closely approximates the actual phase ¢;. As indicated by
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Eqgs. (1) and (6), this phase difference (stopped phase) is
given by

b; — b = et + Aogt + wg AT, + I, + R, -+ C, (8)
where

I 7
Awg = ws — 17 — oy T o1

Arr=r1yt 11+ T — Tm

We have assumed the (v, — f) 7., term is negligibly small,
which is usually the case for typical frequency calibration
accuracies (Af/f =~ 10-2).

Typically, residual frequencies in ¢; — ¢ due to model
er7ors in 7, o) and o) are less than 0.2 Hz at S-band. The
second term in Eq. (7) has a frequency roughly equal to
2 ¢, which typically falls in the range 5 to 200 Hz. Thus, a
sum over time intervals that are small (~ 0.1 cycle) com-
pared to the cycle time of ¢; — ¢, will increase the
amplitude of the first term but will leave it unmodified
otherwise. However, such a sum will generally average
the second term over enough cycles (~ 5) to make it
negligibly small. These sum intervals are typically
0.1to0 1.0 seconds long. Fringe stopping can be formally
represented as the sum

t'=t+At /2

Us (t, “'m) = Uzl (t', i) COS P (t,) (9)

tr=t-At 2

where At is the sum interval length. All presums within
this interval are included in the sum. The expected form
for these “stopped fringes” is given by the expression

1
Us (¢, 7m) = 5 NsAj cos (¢r — ¢m) + noise (10

where Ng = 2W At, is the number of bits in the interval
At

In the present system, the stopped fringes are divided
by the “known” factor

Ky =—+—N; (11)

so that the maximum fringe amplitude depends only on
correlated flur and noise temperatures. The normalized
stopped fringes are computed by the expression

UN (t, Tm) = Us (t, Tm)/KN (12)
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The expected behavior of the normalized fringes is given
by the expression

Uy (t, 7m) = Axcos (¢; — ¢m) 1 noise (13)

Av = TR1 TR‘) SiDTI’WD AT,
¥y \ Tgl ng = Wp A7,

With this normalization, the maximum fringe amplitude
is theoretically given by

[Ty, Tr,
AN ! max Yo —TI:'—T‘-SL (14)

and therefore depends only on the magnitude of the
“correlated flux temperatures” relative to the system noise
temperatures. Thus, the stopped fringes are sampled
every At, seconds (0.1to1sec) and possess the “stopped”
fringe frequency ¢; — ¢ (< 0.2 Hzat S-band).

where

The stopped fringe frequency (See Eq. 8) is a sum of
two components—the analytical offset ¢ and the residual
fringe frequency Av,

(}E’f * ¢;m = ¢ -+ Av, (15)
where

AVaEA‘D(L + Wg AT: + ia + Ba + C{L

The residual fringe frequency Av, is the unknown fre-
quency due to all physical effects that remain after the
model o, 7, (contained in w,A#}) has been subtracted. The
known offset  is a computational artifact designed to
resolve the frequency sign ambiguity. The sign ambiguity
is a consequence of the fact that only the magnitude of
frequency can be extracted from a sinusoid. The magni-
tude of ¢ is chosen so that it is larger than the maximum
expected magnitude of the residual fringe frequency
Av, including all physical effects. If ¢ is this large, then the
sign of Av, can be determined by noting the sense of the
total output frequency |¢; — éu|relativeto |e|. For ex-
ample, assume that ¢ = +0.2Hz. If Ay, is negative in
Eq. (15), then it is subtracted from ¢ and |¢; — ¢n| is less
than e. If Ay, is positive, then |¢; — ¢ is larger than e.
Therefore, if |¢; — ém| = 0.25 Hz, then Av, = 0.05 Hz.
If |¢; — ¢ém| = 0.15Hz, then Av, = —0.05Hz.

The various contributions to the residual frequency
Av, may be bounded as follows. As indicated earlier, the
mixing frequencies are usually known to within 20 mHz
at S-band. The residual frequency due to parameter errors
in the model geometric delay can be bounded by means
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of the maximum values (Ref. 4) of the sensitivity partials*
which for S-band observations over intercontinental base-
lines (=~ 10,000 km) are given by

? ?
—% ~ 0.5mHz/m 8:)!] ~ 20 mHz/arc sec (16)

where x and # symbolize length and angle parameters,
respectively. For example, if source location errors are
less than 5 arc sec, the residual frequency due to this
error source is less than 100 mHz. The single-raypath
troposphere frequency effect (w, #¢) at S-band is less than
30 mHz for elevation angles greater than 10 deg. This
transmission media effect can be largely eliminated (90%)
by including existing troposphere models in 7,. Iono-
sphere frequency effects at S-band are generally below
5 mHz.

An example of stopped fringes obtained over a Gold-
stone baseline with a 48 kbits/sec recording system?® is
shown in Fig. 3 for nine delay offsets. For the narrow-
band recording system in this example, the a priori delay
was accurate enough to align the two bit streams within a
fraction of a bit. Variations about the a priori delay were
produced by assigning the adjustable offset 7 the indi-
cated values. Note that the amplitude variation of the
fringes as a function of time offset fairly closely approxi-
mates the sin (x)/x width (= 40 us) predicted by Eq. (13).
As explained in Section VI, this amplitude variation versus
model delay can be used to extract the single-channel
delay observable. The frequency of the fringes (=~ 0.1 Hz)
in this example is due mainly to the analytical frequency
offset «.

Thus, there are three primary observables to be ob-
tained from the single-channel stopped fringes, fringe
phase, maximum amplitude, and delay. The maximum
amplitude (Eq. 14) leads to a determination of correlated
flux or fringe visibility which can be used to investigate
source structure. Single-channel fringe phase ¢; — ¢ can
only be determined to within an additive constant (2nx).
For this reason, it only yields information concerning the
time-varying components of the geometric delay, trans-
mission media phase and instrumental phase. The third
single-channel observable, the delay, is a sum of all group
delay effects (geometric, transmission media, instrumen-
tal, clock synchronization). For sufficiently wide recorded
bandwidths, the single-channel delay observable can
yield useful information concerning all of these quantities.

1Vg — C\)a?’"g
zDeveloped by D. S. Robertson and A. H. Legg of Weapons Re-
search Establishment, Australia.
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The techniques used to extract phase, amplitude, and
delay will be discussed in the next three sections.

V. Fourier Analysis

After phase counter-rotation, the stopped fringes con-
sist of sinusoidally varying curves of unknown frequency
(=~ ¢) and amplitude. Fourier analysis can be employed
to extract these unknowns whenever the stopped fringes
possess a sufficiently constant frequency and amplitude
over the integration interval. The factors that cause the
frequency and amplitude to vary will be discussed later
in this section. Assume for the moment that the stopped
fringes possess fairly constant amplitude and frequency
so that Fourier analysis is useful.

Because of computation speed, the Fast Fourier Trans-
form (FFT) is used for Fourier analysis. The FFT used in
the present work can be expressed as the following dis-
crete transform.

1 Y —irfk
a’*WEOgiGXP< N ) k=01---2N—1
¥-1
:éﬁ]§0 g, eXp(—Zrifktﬂ (17)
where
t, = { At
k
fe=or
T = NAt,

In these expressions, N is the number of fringe sample
points in the integration interval T. The integration inter-
val for the present 48-kbits/s recording system is usually
the time span of one tape-pair (= 12min). The input
points g, are given by the stopped fringe values computed
in Eq. (12).

g =Uy(ti,mm) =01---N-1 (18)
where time (¢,) is measured relative to the beginning of
the integration interval. Note that the frequency values
(fr) increment in steps of 1/(2T). (It should be noted that
the normal FFT increments frequency in steps of 1/T
which is sometimes inconveniently large. The normal FFT
subroutines will perform the transform with twice the
normal sample rate if the input array is doubled by filling
the last N members with zeroes).
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The single frequency response of the FFT can be deter-
mined by substituting a pure sinusoid with frequency f
and phase g in Eq. (17).

g, = Arcos 2r fl At; + B) {=0,1 -

The FFT modulus for this input function is given by

AT sin [Tr (k, - k)/2]
|dk| ~

4 o(k — k)2

for |k; — k| << 2N (20)

where k; = 2fT. Note that the frequencies k and k; are in
units of 1/(2T). As indicated by the sin(x)/x curve in
Fig. 4, the FFT modulus |ax| peaks when k equals the
input frequency. Note that the main lobe is four intervals
wide. The first zeroes are separated from the principal
maximum by 1/T in frequency. For a monochromatic
input, the first side lobes should be attenuated by about
2/(3x) relative to the main lobe.

The data points in Fig. 4 are the FFT of the fringes in
Fig. 3 for rv = 0. The fact that the fringe FFT drops to
zero within 1,/T and also has side lobes of the correct size
indicates that, at the spectral sensitivity of the transform
(=~ 200 xHz), only one frequency is present.

After the FFT has been calculated for a given fringe
curve, the FFT modulus is digitally searched for a maxi-
mum. After the main lobe is located, peak amplitude and
center frequency are estimated by interpolation between
the three main-lobe points or by a least-squares fit. In the
least squares fit, the single-frequency response curve is
typically fit to the points in the main lobe and two side
lobes with the amplitude (A;) and frequency (f) as solve-
for parameters as indicated in Fig. 4.

Up to this point, we have assumed that the stopped
fringes possess a constant amplitude and frequency over
the integration period. In practice, both of these quanti-
ties change in time. The amplitude slowly changes
because the radio source brightness transform and the
system temperatures can sometimes change with time.
Generally, these amplitude changes are negligible for
integration times less than 10 min. The stopped fringe fre-
quency, however, can change considerably in 10 min due
to instrumental frequency instability, geometric delay
model errors, and transmission media delays. If one of
these fzectors causes frequency drifts across the integration
interval (T) that are comparable to 1/T, the FFT will
spread out so that the FFT peak amplitude will under-
estimate the actual fringe amplitude. Expressed in terms
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of phase, large phase deviations (~ 0.1 cycle) from linear
behavior will cause loss of coherence in integration and
therefore will diminish the peak response. If the frequency
drifts are large compared to 1/7, the FFT peak amplitude
for weak sources can be so drastically reduced that the
FFT signal is lost in the noise.

Rapid changes in frequency can sometimes be caused
by rapidly changing troposphere delays at low elevation
angles. This effect can generally be adequately removed
by including an accurate troposphere correction in the
model delay 7.

The magnitude of geometric frequency drifts can be
bounded by means of the maximum values of the appro-
priate second partials, which for intercontinental observa-
tions at S-band are given by

o2 A
Vo Cvg
~ we

ox ot ox

< 0.04 uHz/m-sec

max

(21)
0% vy < cvy

agot = " 20

< 1.5 pHz/(arc sec)-sec

max

where x, § symbolize length and angle variables respec-
tively and v, is Earth’s rotation rate in radians/sec. For
example, for a source error of 1 arc sec and an integra-
tion time of 100 sec, the geometric residual frequency
would change by less than 0.15 mHz. Since the FFT single
frequency response would be 10 mHz wide in this exam-
ple, a frequency drift less than 0.15 mHz would only
slightly decrease the FFT peak amplitude.

Instrumental instability can also cause frequency varia-
tions that reduce the FFT peak amplitude. Up to this
point, we have only emphasized the largest component
in the mixing signal, the linear term Aw.f. In practice,
actual mixing signals drift away from this ideal linear
behavior by some amount, which has been collected in
the phase term I,(#). These mixing signal drifts are
usually due to frequency standard instabilities. One can
easily estimate a typical phase (or frequency) drift for a
given frequency standard if the stability specifications are
available.

In summary, a Fourier transform of the stopped fringes
serves two purposes in the present data reduction system.
First, the FFT is used to detect the presence of fringes.
The FFT reduces the detection problem to a simple
search in the frequency domain. Secondly, once the FFT
peak has been detected, the amplitude and frequency of
the fringes can be estimated. These amplitude and fre-
quency estimates are then used to initialize the phase
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tracking procedure, which will be described in the next
section. The new estimates for amplitude and frequency
produced by phase tracking are usually adopted as the
final values. However, the FFT estimates for these quan-
tities often serve as useful “quick-look” values.

VI. Phase Tracking

As indicated in the last section, FFT analysis can be
used to determine the amplitude and frequency of the
stopped fringes if they are “monochromatic” with constant
amplitude over the integration interval. However, if non-
linear phase excursions are present, it is often desirable to
extract the phase as a function of time. In addition, as we
shall see, the two-channel approach to bandwidth syn-
thesis requires phase extraction. Therefore, a technique
called phase tracking was developed to extract the fringe
phase. In this procedure, the time interval of interest
(generally the FFT integration interval) is separated into
subintervals with length At, (typically 1 to 100 sec). Each
subinterval is fit successively by least squares with the
sinusoid

fs (&) = Agcos [27 (fst + ¢s)] (22)

where time ¢ is zero at the beginning of each subinterval.
With this definition, the phase ¢, denotes the phase at the
beginning of the subinterval. In each subinterval, the
amplitude (A,), frequency (f;), and phase (¢,) are simul-
taneously varied in the least-squares fit. In the fit to each
subinterval, the a priori amplitude and frequency are
usually assigned the FFT values for the whole phase track
period (= 10 min).

For the first interval, the a priori phase is determined
by a least-squares search between 0-1 cycle with the am-
plitude and frequency fixed at the FFT values. After this
initialization, a simultaneous least squares fit gives the
amplitude, frequency, and phase (between 0-1 eycle) for
the first interval,

For the next and successive subintervals, the a priori
phase is found by adding the phase increment predicted
by

Ay = frer Aty (23)

to the least-squares phase value for the preceding interval
where frpr is the FFT frequency estimate. This projected
phase estimate must be correct within about 0.2 cycle in
order for the fit to succeed. (When frequency changes
across the FFT integration interval are large, the fre-
quency and phase of a given subinterval should be
initialized with the least-squares frequency of the pre-
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ceding subinterval provided the SNR is adequate.) After
the simultaneous three-parameter fit for each subinterval,
the parameter covariance errors are calculated on the
basis of the actual RMS fringe residuals. Thus, the phase
track output consists of the amplitude, frequency, phase,
covariance errors, and RMS fringe residual for each
subinterval.

The length of the subintervals should be made suffi-
ciently small to reveal nonlinear trends in the phase.
When nonlinear phase trends are present, the maximum
subinterval length is defined by

Aty < ‘ZT(P (24)

where o4 is the phase covariance error due to system
noise, and Af, is the frequency change over the subinter-
val. That is, the phase effects of frequency drifts across a
subinterval should be small compared to phase measure-
ment precision. The minimum subinterval length is ap-
proximately equal to the time required for 0.5 cycle of
fringe phase or by SNR limitations.

After the phase for each subinterval has been extracted,
the phase values for the phase track period are given the
proper sign by appropriately removing the analytical off-
set ¢t (see Eq. 8). The expected behavior of these cor-
rected phase values, called residual phase A¢,, is given
by the expression

Apy = Awgl + g At +1,+ R, + C, (25)

If the delay model is sufficiently accurate and the fre-
quency system is sufficiently stable, the residual phase
will, to good approximation, vary linearly in time over the
phase track interval (=~ 10 min). For this reason the resi-
dual phase values are fit by least squares with a straight
line over the interval. In some cases, the fit slope, which
is the “average” residual fringe frequency for the fit inter-
val, is used as the “phase observable” for that interval.
However, when large nonlinear phase excursions are
present over a fit interval, the residual phase should be
analyzed, since a single frequency clearly cannot describe
nonlinear phase changes.

In some applications, when one source is observed
more or less continuously for hours, the phase can be
connected between phase track periods (in analogy with
the phase projection described above) so that one obtains
the connected phase over a long time interval (1 to 8
hours). When phase can be connected over hours, low
magnitude (=~ 0.1 cycle) short term (= 10min) phase
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excursions are less damaging. For example, local deriva-
tives of the indicated excursions produce frequency noise
of the order of 0.1 mHz which corresponds to 20 c¢m in
equivalent baseline error for S-band observations. On the
other hand, a grand fit to hours of connected phase data
in this example will experience only 0.1 cycle (1 cm at
S-band) of phase noise.

An example of a least-squares fit of a phase-track
sinusoid is shown in Fig. 3 for several delay offsets. Only
a fraction of the first subinterval (30 out of 50 sec) is dis-
played in the figure. Figure 5 shows the residual phase
values obtained by phase-tracking the v = 0 fringes in
Fig. 3 over 600 sec. Note that the 0.1-Hz analytical offset
has been removed. The residual fringe frequency Ag, is
a consequence of all of the terms listed in Eq. (25). As one
would require, there is excellent agreement between the
fringe frequency values obtained by phase-tracking in
Fig. 5 and by Fourier transform in Fig. 4 (after the FFT
result has been corrected for the 100-mHz analytical off-
set). The amplitude values obtained by phase-tracking the
fringes in Fig. 3 are shown in Fig. 6. The amplitude value
for each delay offset 7 is an average of the twelve ampli-
tudes obtained from the twelve phase-track subintervals.
Note the excellent agreement between the amplitudes
obtained by phase-tracking (=v = 0 case in Fig. 6) and by
Fourier analysis in Fig. 4. As indicated in Fig. 6, the am-
plitude variation versus time offset has been fit with the
sin (x)/x curve that would be generated by an ideal
rectangular bandpass that is 24 kHz wide. The deviation
of data points from the sin (x)/x curve is primarily due to
the nonideal response of the actual system bandpass. In
the least-squares fit, the center and amplitude of the
sin (x)/x curve are used as solve-for parameters. The
least-squares values for amplitude and center delay are a
measure of the maximum amplitude and single-channel
delay for the phase-track interval. (The delay and ampli-
tude errors quoted for the example in Fig. 6 include the
modeling error associated with the inadequate sin (x)/x
curve. It should be noted that a more accurate delay curve
model based on system bandpass measurements would
improve the delay and amplitude precision considerably.
For the example in Fig. 8, the delay uncertainty due to
system noise alone would be about 150 nsec).

After a given time interval has been phase-tracked, the
most important output quantities are the amplitude and
phase for each subinterval. For the present 48 kbits/s sys-
tem, only the phase values that are generated by the
“peaked” fringes [i.e., 2Wj Ar, < 1] are retained for sub-
sequent data analysis. (The slight statistical advantage
gained by processing more delay offsets is greatly out-
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weighed by the increased computation costs for this sys-
tem)., The fringe phase is an important observable
containing valuable information concerning geometric
quantities as well as transmission media and instrumental
effects. As indicated in the next section, phase values
measured for two separate channels can be combined by
a procedure known as bandwidth synthesis to extract the
delay. The amplitude values produced by the peaked
fringes are retained for use in source structure calcula-
tions. If the fringes are phase-tracked or Fourier-analyzed
for a range of delay offsets (rv), the amplitude variation
as a function of delay can be analyzed to extract the
single-channel delay.

VIl. Bandwidth Synthesis

This section is devoted to a discussion of time delay
measurements with emphasis on two-channel bandwidth
synthesis.

As indicated in Section VI for a single band-limited chan-
nel, fringe phase can be determined over the phase-track
interval except for an overall 2nn ambiguity. Therefore,
with regard to single-channel phase, only the time-varying
components carry information that may be readily ana-
lyzed. Since the z-component of the baseline (component
along Earth’s spin axis) enters the phase as a constant
effect for a given source (Ref. 4), this 2nz phase un-
certainty increases the difficulty of determining the
z-component from single-channel phase. For this reason,
delay measurements are desirable for three-dimensional
baseline determination. Furthermore, the extra informa-
tion carried by the delay observable strengthens the
solution of the general multiparameter fitting procedure
involving sources, baselines, and Earth orientation fac-
tors. For example, the delay observable removes the well-
known singularity problem (unknowns > independent
equations) and the zero-declination weakness associated
with fits to fringe phase (or fringe frequency). For these
reasons, a capability for precisely measuring delay be-
comes very desirable.

In general, the precision of delay measurements im-
proves as the range of the observed frequencies increases
(see Ref. 1 and Eq. 27). One way to increase the frequency
range is to increase the recorded bandwidth. However,
practical considerations regarding the size of the instan-
taneous record rate (cross-correlation cost and complexity,
recorder availability) place the present system band-
widths at 2 MHz or less. Delay measurements with high
precision (= 60 psec ~ 2 cm) require much larger band-
widths than 2 MHz (Ref. 1). Therefore, in order to
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increase the frequency range further, a technique known
as bandwidth synthesis has been employed. In this tech-
nique, one combines, either directly or indirectly, the
phase information provided by a few band-limited chan-
nels whose separation in frequency is large compared to
the single-channel bandwidth. In the original application
of this technique (Ref. 5) six channels of radio noise were
recorded in a time-shared mode. In that system the six
channels equally share the total statistics allowed by the
instantaneous record rate. However, the statistics asso-
ciated with the two outer channels, separated by the
greatest frequency interval, primarily determine the final
precision of the delay observable. The inner channels
serve mainly to resolve ambiguities in the delay determi-
nation. That is, with a six-channel experiment, the a priori
delay can be much more uncertain than the a priori delay
in a two-channel experiment with the same total fre-
quency spread. However, in measurements that involve
sufficiently precise a priori delay information, inner chan-
nels serve no function and are a waste of statistics.? In
those cases, only the two outer channels should be mea-
sured, so all of the statistical strength of the measurement
contributes to the final delay precision. An example of
such a measurement situation would be a set of short
baseline (< 200km) experiments designed to frequently
monitor small baseline changes due to tectonic motion.
The delay observable is not greatly corrupted by trans-
mission media because of differential cancellation over
short baselines. Furthermore, delays for short baselines
are less sensitive to angular errors in Earth orientation and
source locations. Therefore, if sufficiently precise values
for source locations and Earth orientation are gathered
from other work, the a priori delay can be calculated with
sufficient accuracy to allow two-channel ambiguity reso-
lution. (If the baseline is fairly uncertain initially, one can
make one or two preliminary measurements with closely
spaced channels to lower the baseline uncertainty.) See
Ref. 6 for a feasibility demonstration experiment for such
a system. In some radio interferometry applications the
two-channel approach is not adequate. An example would
be a set of experiments that are corrupted by uncalibrated
ionosphere delays that are large compared to the ambi-
guity level associated with the outer-channel separation.

In the remainder of this section, two-channel band-
width synthesis will be analyzed. In principle, the multi-
channel system is also treated since the two-channel
approach can be applied successively to channel pairs
beginning with the two most closely spaced channels.
That is, one can refine the a priori delay on the basis of
the first two channels and proceed to the next larger sepa-

3This point was originally suggested by P. F. MacDoran.
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ration and so forth. However, in the original application
(Ref. 5) of the multichannel approach, the delay was ob-
tained by summing the fringes of the various channels to
obtain a delay response curve. This approach requires
calibration of the relative phase of the various channels.
As we shall see, the two-channel approach treats the
instrumental phase as a solve-for parameter and thereby
eliminates the need for relative phase calibration. That is,
the only requirement placed on the instrumental phase by
the two-channel technique is that the instrumental phase
should exhibit stability with respect to some simple func-
tional form—a constant, linear drift, etc.

An example of an instrumental configuration designed*
for optimum phase stability in two-channel observations
is shown in Fig. 7. In this system, a 10-MHz signal from
the H-maser is converted to a 2240-MHz first local oscil-
lator (LO) signal by using only multipliers: the standard
X4 X8 multipliers and a new X7 multiplier. The X7
multiplier was designed and constructed® in order to avoid
the use of a synthesizer. The X7 multiplier converts the
input sinusoid to a square wave and then filters and ampli-
fies the seventh harmonic.

In order to achieve maximum channel separation and
better delay precision, the traveling wave maser (TWM)
receiver bandpass was broadened by retuning the trim
coil currents. In the retuned state, the receiver exhibited
ample amplification over a 40-MHz interval (2270 to 2310
MHz) while maintaining an operating system noise tem-
perature less than 30 K. Therefore, after mixing with the
first LO signal at 2240 MHz, the edges of the receiver
passband were placed at 30 and 70 MHz. However, this
frequency spread exceeded the bandpass of the standard
first mixer/preamp which possesses adequate gain only
over 45 to 55 MHz. Consequently, the standard mixer/
preamp was replaced with a similar module with a band-
pass between 10 and 160 MHz, thereby making the system
bandpass TWM-limited. The IF passband is then filtered
into two channels—one centered at 30 MHz and the other
at 70 MHz. Each channel is mixed with a 20-MHz signal
derived from the hydrogen maser and each mixer response
is appropriately filtered to place both channels at 50 MHz.
At this point, each channel is transferred on alternate sec-
onds to the video converter. The video converter mixes
the input IF signal to baseband with a 50-MHz signal
derived from the hydrogen maser. This time-shared base-
band signal is passed through a 24-kHz bandpass for digi-
tal sampling and recording at a 48-kbit/sec rate. Note that

4This configuration was designed by D. J. Spitzmesser.
5Designed and constructed by R. L. Sydnor.
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the instrumental phase of this system relies exclusively on
multipliers and H-maser frequency standards. [With this
configuration, the differential phase noise was less than
0.008 cycles between the two channels for 700 second
integration times (Ref. 6). Phase noise at the 0.008 cycle
level corresponds to 200 psec (6 cm) of delay noise for a
40-MHz synthesized bandwidth.]

An example of stopped fringes generated by the above
configuration is shown in Fig. 8. Note that alternate sec-
onds clearly contain distinct fringes. The phase tracking
technique outlined earlier can easily be modified to inde-
pendently extract the phase of each fringe curve. Phase
values obtained from the example fringes in Fig. § are
shown in Fig. 9. The analytical offset ¢ has been removed
after assigning the phase the proper sign. The small non-
linear phase excursions (= 0.03 cycle) could possibly be
due to ijonosphere effects. Note that the excursions are
nearly identical in the two channels so that they nearly
cancel in the delay calculation that follows. As indicated
by Eq. (25), these phase values are theoretically repre-
sented by the expressions

A¢y = 0z A7y + Ry + ¥, + C, (26)
A(f)b - waT; -+ Rb -+ ‘I’b + Cb

where the subscript a (b) denotes channel a (b). In this
expression, all instrumental phase effects have been in-
cluded in ¥, and ¥;. The measured delay (A7) may be
extracted by combining the phase values as follows:

Ap o Bbe T Ao 27)

Wq — Wh

In calculating Ar, one can assume that the frequency sepa-
ration o, — y is essentially perfectly known (Af/f =~ 10-12).
As described below, care must be taken to assign the cor-
rect value of 2nx to A¢, — A¢y. The expected behavior of
Ar is given by the expression

T, — ¥y + C,— Cy
Ar = A7, + b " (28)

Wg 7T W

We have assumed that the brightness transform phase R,
changes a negligible amount between channels.

The charged particle phase difference C, — C; can be
reduced to delay 7, as follows. It can be readily shown
that the charged-particle phase shift for channel x is given
by expression (Ref. 7):

_b

g

C. (29)
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Pr

(N; —N)

o 27rmeC

In this expression, ¢ is the speed of light and e and m, are
the charge and mass of the electron in mks units. Further-
more, N, — N, is the difference of the electron columnar
content (number /area) along the two ray paths. The phase
shift C, is in cycles, and the frequency o, is in Hz. Based
on Eq. (29), the charged-particle phase difference becomes

P P,
Co—Cp=———

Wgq wp

P
= — 2 (0a — o) for [o — op] << g

Wq

= Tea (wa - (ub) (30)

where 7, = —Py/0? is the total delay due to charged
particles. The expected behavior of the measured delay
is then given by
Y, — ¥
Ar = Ar, + Y (31)

wg T W

where
A7, = Al + 7,

:Tg+TI+TC+Tt"Tm

If the model delay is sufficiently accurate, and if the
frequency systems are well calibrated, the measured delay
Ar will be constant (within the delay noise) over consider-
able time intervals (=~ 10min). In this case, the delay
values can be averaged over the interval. The delay values
obtained from the phase plots in Fig. 9 are shown in
Fig. 10 along with the average delay At for the whole
10-min interval. The delay error estimate in Fig. 10 is the
uncertainty due to system noise.

When the phase values from the two channels are com-
bined in Eq. (27), care must be taken to avoid 2n= ambi-
guities, That is, the difference A¢, — A, must be assigned
the proper number of integer cycles. A procedure with
which 2n= ambiguities can be resolved will be discussed
in the next four paragraphs.

Note that the phase difference is theoretically a sum of
two terms.

Apg — Ay = {wg — wp) AT, + Ty — Ty (32)

The instrumental phase term ¥, — ¥y, usually is not con-
stant due to differences in the frequency systems at the
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two stations. If the frequency systems are very stable
(af/f = 10** for the better H-maser standards), this in-
strumental phase difference can be treated as a constant
plus a linear drift in time. The linear drift is due primarily
to the rate difference of the frequency standards. For good
frequency standard calibration accuracies (Af/f = 102),
the rate, ¥, — ¥, will be about 40 uHz for a 40 MHz
channel separation. At this rate, the instrumental phase
difference will change only one cycle in 8 hours.

The maximum magnitude of the first term (w, — w3) A7,
is determined by the residual delay Ar,, which may be
estimated as follows, The maximum geometric delay errors
are readily calculated using the maximum partial magni-
tudes and the a priori uncertainties in the geometric delay
parameters (baseline, source location, UT1 etc.). The max-
imum values of the sensitivity partials (Ref. 4) for the
geometric delay over an intercontinental baseline
(= 10,000 km) are given by

o7y
e 3nsec/m

% ~ 150 nsec/arc sec (33)
where x and § symbolize length and angle parameters
respectively. For example, if the a priori source position is
uncertain at the 2 arc sec level, this uncertainty will con-
tribute less than 300 nsec to Ar,. The magnitudes of trans-
mission media calibration errors can usually be estimated
once the calibration technique is selected. The terms in
the delay that are constant at the level required for am-
biguity resolution can be neglected at this stage. We will
assume cable delays, bandpass group delays, etc., are
constant at this level. These constant terms, as we shall
see, are truncated or absorbed in the constant offset. After
one has determined the maximum value of Ar, due to
uncertainties in the variable components, the channel
separation o, — op, is selected so that, in the worst case,
the term (@, — w3) A7, is less than 0.2 cycle in magnitude.
With this design, this first term will scatter more or less
randomly between +=0.2 cycle as one measures the delay
for various sources in various directions.

Therefore, the phase difference A¢, — Apy consists of
two terms—a slowly changing but continuous instrumental
phase term plus a delay term that varies more or less ran-
domly between +0.2 cycle when changing from source
to source. Since the rate of the instrumental term is
usually not exactly known, it may be treated as follows.
We will assume for the moment that the rate is small
(~ 40 uHz). The average phase difference A¢, — Agy for
the first radio source (1 to 10 minutes duration) is assigned
the particular value of 2n~ required to place Ag, — Agy
between 0 to 1 cycle. This initialization procedure is justi-
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fied by the fact that delay will always possess an unknown
additive constant that will be a solve-for parameter. By
this initialization, the level of the constant has been chosen
to place the first delay value in a specified range. This
delay truncation means that clock synchronization and
constant instrumental delays cannot be determined by
two-channel bandwidth synthesis unless elaborate instru-
mental phase and delay calibrations are performed to
initialize the instrumental constant to within 2nz. Once
the first delay has been defined, care must be taken to
assign the correct value of 2n= to subsequent delay values.
If the instrumental phase, ¥,— ¥, is slowly varying
(~ 40 uHz) then it will change by a fraction (~ 0.03) of a
cycle before the next delay value is obtained a short time
(=~ 10 min) later. If this is the case, the next phase differ-
ence must be within + 0.2 cycle of the first difference
provided the residual delay Ar, falls in the expected
range. In this manner, the 2n+ factor for each delay can
be determined by comparison with the preceding phase
difference.

Up to this point, we have assumed the instrumental rate
¥, — ¥y is small (~ 40 uHz). When this assumption is not
satisfied, several courses of action are available. The most
reliable but time-consuming frequency calibration in-
volves an independent multiparameter fit to the single-
channel phase (fringe frequency) observables to obtain
the frequency offset at RF. The resulting offset can be
easily scaled from RF to the synthesized bandwidth. No
time is wasted by this procedure, since an independent
fringe frequency solution should normally be performed
as a check on the delay solutions. Another easier frequency
calibration technique is to use a well-known source as a
calibrator provided other geometric fringe frequency
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uncertainties are sufficiently small. The frequency stand-
ard rate difference has to be determined to within only
about 2 MHz at S-band to allow the ambiguity resolution
steps to proceed for a 40-MHz synthesized bandwidth.
Once the oscillator offset is approximately known, the
phase differences, A¢, — Ay, can be corrected to remove
the rapid linear drift. The ambiguity resolution process
can then be applied, as outlined above, to these more
slowly varying corrected phase differences.

Once the single-channel phase values and delay values
have been determined for all observations, these observ-
ables can be fit simultaneously by a weighted least-squares
technique to determine the source locations, baseline and
Earth orientation factors. If the delay model r,, used in
data reduction is considered inappropriate for the least-
squares fit, then one can add r, to the measured delay
Ar to obtain the total measured delay free of theoretical
models.

VIl. Summary

In this report, the practical aspects of the JPL long
baseline interferometry data reduction procedure have
been described. The steps include bit stream manipula-
tions, fringe stopping, Fourier analysis and phase-
tracking. The most important output of these steps is
fringe amplitude and fringe phase. Fringe phase values
measured for two separate channels are combined by a
procedure known as bandwidth synthesis to precisely ex-
tract delay. For less precise delay measurements, fringe
amplitude variation versus model delay can be used to
extract single-channel delay. Peak fringe amplitude can
yield valuable information concerning source structure.
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